Nuclear Fushion | |
Validation of 2D and measurements made with Helium imaging spectroscopy in the volume of the TCV divertor | |
article | |
B.L. Linehan1  A. Perek2  B.P. Duval2  F. Bagnato2  P. Blanchard2  C. Colandrea2  H. De Oliveira2  O. Février2  E. Flom4  S. Gorno2  M. Goto5  E. Marmar1  L. Martinelli2  A. Mathews1  J. Muñoz-Burgos6  D. Mykytchuk2  N. Offeddu2  D.S. Oliveira2  H. Reimerdes2  D. Reiter7  O. Schmitz4  J.L. Terry1  C. Theiler2  C.K. Tsui8  B. Vincent2  T. Wijkamp3  C. Wüthrich2  W. Zholobenko9  | |
[1] Massachusetts Institute of Technology;Ecole Polytechnique Fédérale de Lausanne ,(EPFL), Swiss Plasma Center;DIFFER-Dutch Institute for Fundamental Energy Research;University of Wisconsin Madison;National Institute for Fusion Science;Astro Fusion Spectre LLC;Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität;Center for Energy Research ,(CER), University of California-San Diego;Max-Planck-Institut für Plasmaphysik | |
关键词: scrape-off layer; multi-spectral imaging; TCV; helium collisional radiative modeling; plasma boundary physics; tokamak divertor; tokamak diagnostics; | |
DOI : 10.1088/1741-4326/acb5b0 | |
来源: Institute of Physics Publishing Ltd. | |
【 摘 要 】
Multi-spectral imaging of helium atomic emission (HeMSI) has been used to create 2D poloidal maps of {{T}}_{mathrm{e}}and {{n}}_{mathrm{e}}in TCV's divertor. To achieve these measurements, TCV's MANTIS multispectral cameras (Pereket al2019Rev. Sci. Instrum.90123514) simultaneously imaged four He I lines (two singlet and two triplet) and a He II line (468 nm) from passively present He and He+. The images, which were absolutely calibrated and covered the whole divertor region, were inverted through the assumption of toroidal symmetry to create emissivity profiles and, consequently, line-ratio profiles. A collisional-radiative model (CRM) was applied to the line-ratio profiles to produce 2D poloidal maps of {{T}}_{mathrm{e}}and {{n}}_{mathrm{e}} . The collisional-radiative modeling was accomplished with the Goto helium CRM code (Zholobenkoet al2018Nucl. Fusion58126006, Zholobenkoet al2018Technical Report , Goto 2003J. Quant. Spectrosc. Radiat. Transfer76331–44) which accounts for electron-impact excitation (EIE) and deexcitation, and electron–ion recombination (EIR) with {extrm{He}}^{+} . The HeMSI {{T}}_{mathrm {e}}and {{n}}_{mathrm{e}}measurements were compared with co-local Thomson scattering measurements. The two sets of measurements exhibited good agreement for ionizing plasmas: ({5 ,{extrm{eV}} leqslant {{T}}_{mathrm{e}} leqslant 60 ,{extrm{eV}}} , and {2 imes 10^{18}, {extrm{m}}^{-3} leqslant{{n}}_{mathrm{e}} leqslant 3 imes 10^{19},{extrm{m}}^{-3}})in the case of majority helium plasmas, and ({10 ,{extrm{eV}} leqslant {{T}}_{mathrm{e}} leqslant 40 ,{extrm{eV}}},{2 imes 10^{18},{extrm{m}}^{-3} leqslant{{n}}_{mathrm{e}} leqslant 3 imes 10^{19} ,{extrm{m}}^{-3}})in the case of majority deuterium plasmas. However, there were instances where HeMSI measurements diverged from Thomson scattering. When {{T}}_{mathrm{e}} leqslant 10 ,{extrm{eV}}in majority deuterium plasmas, HeMSI deduced inaccurately high values of {{T}}_{mathrm{e}}{} . This disagreement cannot be rectified within the CRM's EIE and EIR framework. Second, on sporadic occasions within the private flux region, HeMSI produced erroneously high measurements of {{n}}_{mathrm{e}} . Multi-spectral imaging of Helium emission has been demonstrated to produce accurate 2D poloidal maps of {{T}}_{mathrm{e}}and {{n}}_{mathrm{e}}within the divertor of a tokamak for plasma conditions relevant to contemporary divertor studies.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307170000596ZK.pdf | 11487KB | download |