Frontiers in Psychology | |
Dichotic spectral integration range for consonant recognition in listeners with normal hearing | |
article | |
Yang-Soo Yoon1  Dani Morgan1  | |
[1] Laboratory of Translational Auditory Research, Department of Communication Sciences and Disorders, Baylor University | |
关键词: Dichotic Hearing; Spectral integration; Binaural integration; Consonant recognition; Articulation-Index Gram; | |
DOI : 10.3389/fpsyg.2022.1009463 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: Frontiers | |
【 摘 要 】
Dichotic spectral integration range, or DSIR, was measured for consonant recognition with normal-hearing listeners. DSIR is defined as a frequency range needed from 0-8000 Hz band in one ear for consonant recognition when low-frequency information of the same consonant was presented to the opposite ear. DSIR was measured under the three signal processing conditions: (1) unprocessed, (2) target: intensified target spectro-temporal regions by 6 dB responsible for consonant recognition, and (3) target minus conflicting: intensified target regions minus spectro-temporal regions that increase confusion. Each consonant was low-pass filtered with a cutoff frequency of 250, 500, 750, and 1000 Hz, and then was presented in the left ear or low-frequency (LF) ear. To create dichotic listening, the same consonant was simultaneously presented to the right ear or high-frequency (HF) ear. This was high-pass filtered with an initial cutoff frequency of 7000 Hz, which was adjusted using an adaptive procedure to find the maximum high-pass cutoff for 99.99% correct consonant recognition. Mean DSIRs spanned from 3198-8000 Hz to 4668-8000 Hz (i.e., mid-to-high frequencies were unnecessary), depending on low-frequency information in the LF ear. DSIRs narrowed (i.e., required less frequency information) with increasing low-frequency information in the LF ear. However, the mean DSIRs were not significantly affected by the signal processing except at the low-pass cutoff frequency of 250 Hz. The individual consonant analyses revealed that /ta/, /da/, /sa/, and /za/ required the smallest DSIR, while /ka/, /ga/, /fa/, and /va/ required the largest DSIRs. DSIRs also narrowed with increasing low-frequency information for the two signal processing conditions except for 250 Hz vs. 1000 Hz under the target-conflicting condition. The results suggest that consonant recognition is possible with large amounts of spectral information missing if complementary spectral information is integrated across ears. DSIR is consonant-specific and relatively consistent, regardless of signal processing. The results will help determine the minimum spectral range needed in one ear for consonant recognition if limited low spectral information is available in the opposite ear.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307160006044ZK.pdf | 4523KB | download |