| International Journal of Advanced Network, Monitoring, and Controls | |
| Demand Forecast of Weapon Equipment Spare Parts Based on Improved Gray-Markov Model | |
| article | |
| Ou Li1  Bailin Liu1  Chenhao Li1  Dan Gao1  | |
| [1] School of Computer Science and Engineering Xi’an Technological University Xi’an | |
| 关键词: Grey Theory; Markov Model; Spare Parts Forecast; | |
| DOI : 10.21307/ijanmc-2020-027 | |
| 学科分类:社会科学、人文和艺术(综合) | |
| 来源: Asociación Regional De Diálisis Y Trasplantes Renales | |
PDF
|
|
【 摘 要 】
The demand for spare parts of weapons and equipment is time-varying and random. It is difficult to predict the demand for spare parts. Therefore, on the basis of gray GM(1,1), a state transition probability matrix based on improved state division is used to establish a demand forecast model for weapon equipment and spare parts. The model not only considers the characteristics of the GM(1,1) model’s strong handling of monotonic sequences, but also extracts the characteristics of random fluctuation response of data through the transformation of the state transition probability matrix, avoiding the phenomenon of the worst prediction results when the maximum probability state is not the actual state. It is proved through experiments that the prediction result based on the improved gray-Markov model is superior to the traditional model and the classic gray-Markov prediction model, and the accuracy of the improved model is about 1.46 times higher than that of the gray model.
【 授权许可】
CC BY-NC-ND
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202307160003371ZK.pdf | 472KB |
PDF