期刊论文详细信息
Electronic Journal of Combinatorics | |
On Davenport Constant of the Group $C_2^{r-1} \oplus C_{2k}$ | |
article | |
Kevin Zhao1  | |
[1] South China Normal University | |
DOI : 10.37236/11194 | |
学科分类:统计和概率 | |
来源: Electronic Journal Of Combinatorics | |
【 摘 要 】
Let $G$ be a finite abelian group. The Davenport constant $\mathsf{D}(G)$ is the maximal length of minimal zero-sum sequences over $G$. For groups of the form $C_2^{r-1} \oplus C_{2k}$ the Davenport constant is known for $r\leq 5$. In this paper, we get the precise value of $\mathsf{D}(C_2^{5} \oplus C_{2k})$ for $k\geq 149$. It is also worth pointing out that our result can imply the precise value of $\mathsf{D}(C_2^{4} \oplus C_{2k})$.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307150004998ZK.pdf | 395KB | download |