期刊论文详细信息
Građevinar
Comparison of artificial intelligence methods for predicting compressive strength of concrete
article
Mehmet Timur Cihan1 
[1] Tekirdağ Namık Kemal University, Turkey Çorlu Faculty of Engineering Department of Civil Engineering
关键词: artificial intelligence;    Regression;    ANFIS;    Concrete compressive strength;    multinational data;   
DOI  :  10.14256/JCE.3066.2020
学科分类:社会科学、人文和艺术(综合)
来源: Hrvatsko Drustvo Gradevinskih Inzenjera
PDF
【 摘 要 】

prediction of compressive strength of concrete can lower costs and save time. Therefore, thecompressive strength of concrete prediction performance of artificial intelligence methods (adaptive neuro fuzzy inference system, random forest, linear regression, classification and regression tree, support vector regression, k-nearest neighbour and extreme learning machine) are compared in this study using six different multinational datasets. The performance of these methods is evaluated using the correlation coefficient, root mean square error, mean absolute error, and mean absolute percentage error criteria. Comparative results show that the adaptive neuro fuzzy inference system (ANFIS) is more successful in all datasets.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307150004068ZK.pdf 1920KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:9次