期刊论文详细信息
Journal of Combinatorial Algebra
Computing fusion products of MV cycles using the Mirković–Vybornov isomorphism
article
Roger Bai1  Anne Dranowski2  Joel Kamnitzer1 
[1] University of Toronto;University of Southern California
关键词: Cluster algebras;    affine Grassmannians;    perfect bases;    rank varieties;    fusion;   
DOI  :  10.4171/jca/69
学科分类:外科医学
来源: European Mathematical Society
PDF
【 摘 要 】

The fusion of two Mirković–Vilonen cycles is a degeneration of their product, defined using the Beilinson–Drinfeld Grassmannian. In this paper, we put in place a conceptually elementary approach to computing this product in type AAA. We do so by transferring the problem to a fusion of generalized orbital varieties using the Mirković–Vybornov isomorphism. As an application, we explicitly compute all cluster exchange relations in the coordinate ring of the upper-triangular subgroup of GL4\mathbf{GL}_4GL4​, confirming that all the cluster variables are contained in the Mirković–Vilonen basis.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307150001051ZK.pdf 453KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:1次