期刊论文详细信息
| Quantum topology | |
| The FKB invariant is the 3d index | |
| article | |
| Stavros Garoufalidis1  Roland van der Veen2  | |
| [1] Southern University of Science and Technology;University of Groningen | |
| 关键词: Idealtriangulations; spines; 3-manifolds; normalsurfaces; TQFT; idealtetrahedron; 3D-index; Turaev–Viroinvariants; quantum6j-symbols; tetrahedronindex; | |
| DOI : 10.4171/qt/171 | |
| 学科分类:内科医学 | |
| 来源: European Mathematical Society | |
PDF
|
|
【 摘 要 】
We identify the qqq-series associated to an 111-efficient ideal triangulation of a cusped hyperbolic 333-manifold by Frohman and Kania-Bartoszynska with the 3D-index of Dimofte– Gaiotto–Gukov. This implies the topological invariance of the qqq-series of Frohman and Kania- Bartoszynska for cusped hyperbolic 333-manifolds. Conversely, we identify the tetrahedron index of Dimofte–Gaiotto–Gukov as a limit of quantum 6j6j6j-symbols.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202307150000681ZK.pdf | 182KB |
PDF