期刊论文详细信息
Groups, geometry, and dynamics | |
Totally non-congruence Veech groups | |
article | |
Jan-Christoph Schlage-Puchta1  Gabriela Weitze-Schmithüsen2  | |
[1] Universität Rostock;Universität des Saarlandes | |
关键词: Translation surfaces; Veech groups; congruence groups; | |
DOI : 10.4171/ggd/729 | |
学科分类:神经科学 | |
来源: European Mathematical Society | |
【 摘 要 】
Veech groups are discrete subgroups of SL(2,R)\mathrm{SL}(2,\mathbb{R})SL(2,R) which play an important role in the theory of translation surfaces. For a special class of translation surfaces called origamis or square-tiled surfaces, their Veech groups are subgroups of finite index of SL(2,Z)\mathrm{SL}(2,\mathbb{Z})SL(2,Z). We show that each stratum of the space of translation surfaces contains infinitely many origamis whose Veech group is a totally non-congruence group, i.e., it surjects to SL(2,Z/nZ)\mathrm{SL} (2,\mathbb{Z}/n\mathbb{Z})SL(2,Z/nZ) for any nnn.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307150000665ZK.pdf | 253KB | download |