期刊论文详细信息
Groups, geometry, and dynamics | |
Modular orbits on the representation spaces of compact abelian Lie groups | |
article | |
Yohann Bouilly1  Gianluca Faraco2  | |
[1] Université de Strasbourg;Max-Planck-Institut für Mathematik | |
关键词: Mapping class group; character variety; dense representations; abelian Lie groups; | |
DOI : 10.4171/ggd/716 | |
学科分类:神经科学 | |
来源: European Mathematical Society | |
【 摘 要 】
Let SSS be a closed surface of genus ggg greater than zero. In the present paper, we study the topological-dynamical action of the mapping class group on the Tn\mathbb T^nTn-character variety giving necessary and sufficient conditions for Mod(S)\mathrm{Mod}(S)Mod(S)-orbits to be dense. As an application, such a characterisation provides a dynamical proof of the Kronecker's theorem concerning inhomogeneous Diophantine approximation.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307150000654ZK.pdf | 421KB | download |