Groups, geometry, and dynamics | |
Cocycle superrigidity for profinite actions of irreducible lattices | |
article | |
Daniel Drimbe1  Adrian Ioana2  Jesse Peterson3  | |
[1] KU Leuven;Unuversity of California San Diego;Vanderbilt University | |
关键词: Cocycle superrigidity; deformation/rigidity theory; orbit equivalence; profinite action; irreducible lattice; strong ergodicity; | |
DOI : 10.4171/ggd/700 | |
学科分类:神经科学 | |
来源: European Mathematical Society | |
【 摘 要 】
Let Γ\GammaΓ be an irreducible lattice in a product of two locally compact groups and assume that Γ\GammaΓ is densely embedded in a profinite group KKK. We give necessary conditions which imply that the left translation action Γ↷K\Gamma \curvearrowright KΓ↷K is “virtually” cocycle superrigid: any cocycle w :Γ×K→Δ{w\colon \Gamma\times K\rightarrow\Delta}w:Γ×K→Δ with values in a countable group Δ\DeltaΔ is cohomologous to a cocycle which factors through the map Γ×K→Γ×K0\Gamma\times K\rightarrow\Gamma\times K_0Γ×K→Γ×K0 for some finite quotient group K0K_0K0 of KKK. As a corollary, we deduce that any ergodic profinite action of Γ=SL2(Z[S−1])\Gamma=\mathrm{SL}_2(\mathbb Z[S^{-1}])Γ=SL2(Z[S−1]) is virtually cocycle superrigid and virtually W∗^*∗-superrigid for any finite nonempty set of primes SSS.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307150000639ZK.pdf | 287KB | download |