期刊论文详细信息
Groups, geometry, and dynamics
Cocycle superrigidity for profinite actions of irreducible lattices
article
Daniel Drimbe1  Adrian Ioana2  Jesse Peterson3 
[1] KU Leuven;Unuversity of California San Diego;Vanderbilt University
关键词: Cocycle superrigidity;    deformation/rigidity theory;    orbit equivalence;    profinite action;    irreducible lattice;    strong ergodicity;   
DOI  :  10.4171/ggd/700
学科分类:神经科学
来源: European Mathematical Society
PDF
【 摘 要 】

Let Γ\GammaΓ be an irreducible lattice in a product of two locally compact groups and assume that Γ\GammaΓ is densely embedded in a profinite group KKK. We give necessary conditions which imply that the left translation action Γ↷K\Gamma \curvearrowright KΓ↷K is “virtually” cocycle superrigid: any cocycle w ⁣:Γ×K→Δ{w\colon \Gamma\times K\rightarrow\Delta}w:Γ×K→Δ with values in a countable group Δ\DeltaΔ is cohomologous to a cocycle which factors through the map Γ×K→Γ×K0\Gamma\times K\rightarrow\Gamma\times K_0Γ×K→Γ×K0​ for some finite quotient group K0K_0K0​ of KKK. As a corollary, we deduce that any ergodic profinite action of Γ=SL2(Z[S−1])\Gamma=\mathrm{SL}_2(\mathbb Z[S^{-1}])Γ=SL2​(Z[S−1]) is virtually cocycle superrigid and virtually W∗^*∗-superrigid for any finite nonempty set of primes SSS.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307150000639ZK.pdf 287KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次