期刊论文详细信息
Groups, geometry, and dynamics
Complete topological descriptions of certain Morse boundaries
article
Ruth Charney1  Matthew Cordes2  Alessandro Sisto3 
[1] Brandeis University;ETH Zurich;Heriot-Watt University
关键词: Morse boundary;    Cantor set;    Sierpinski´ curve;    right-angled Artin groups;    hyperbolic 3-manifolds;   
DOI  :  10.4171/ggd/669
学科分类:神经科学
来源: European Mathematical Society
PDF
【 摘 要 】

We study direct limits of embedded Cantor sets and embedded Sierpiński curves. We show that under appropriate conditions on the embeddings, all limits of Cantor spaces give rise to homeomorphic spaces, called ω\omegaω-Cantor spaces, and, similarly, all limits of Sierpiński curves give homeomorphic spaces, called ω\omegaω-Sierpiński curves. We then show that the former occur naturally as Morse boundaries of right-angled Artin groups and fundamental groups of non-geometric graph manifolds, while the latter occur as Morse boundaries of fundamental groups of finite-volume, cusped hyperbolic 3-manifolds.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307150000634ZK.pdf 409KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次