期刊论文详细信息
Journal of noncommutative geometry | |
An equivariant Poincaré duality for proper cocompact actions by matrix groups | |
article | |
Hao Guo1  Varghese Mathai2  | |
[1] Texas A&M University, College Station;University of Adelaide | |
关键词: Poincaré duality; equivariant; matrix groups; linear groups; | |
DOI : 10.4171/jncg/468 | |
学科分类:神经科学 | |
来源: European Mathematical Society | |
【 摘 要 】
Let GGG be a linear Lie group acting properly on a GGG-spinc\mathrm{spin}^cspinc manifold MMM with compact quotient. We give a short proof that Poincaré duality holds between GGG-equivariant KKK-theory of MMM, defined using finite-dimensional GGG-vector bundles, and GGG-equivariant KKK-homology of MMM, defined through the geometric model of Baum and Douglas.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307150000556ZK.pdf | 229KB | download |