期刊论文详细信息
Journal of noncommutative geometry | |
A noncommutative extension of Mahler’s interpolation theorem | |
article | |
Jean-Éric Pin1  Christophe Reutenauer2  | |
[1] Université de Paris et CNRS;Université du Québec à Montréal | |
关键词: Noncommutative algebra; free group; free monoid; Magnustransformation; subword functions; sequential functions; noncommutative polynomial functions; p-groups; noncommutative interpolation; Mahler’s interpolation theorem; p-adic; difference operator; forward difference formula; combinatoricson words; | |
DOI : 10.4171/jncg/480 | |
学科分类:神经科学 | |
来源: European Mathematical Society | |
【 摘 要 】
We prove a noncommutative generalization of Mahler’s theorem on interpolation series, a celebrated result of ppp-adic analysis. Mahler’s original result states that a function from N\mathbb{N}N to Z\mathbb{Z}Z is uniformly continuous for the ppp-adic metric dpd_pdp if and only if it can be uniformly approximated by polynomial functions. We prove an analogous result for functions from a free monoid A to a free group F(B)F(B)F(B) where dpd_pdp is replaced by the pro-ppp metric.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307150000547ZK.pdf | 450KB | download |