期刊论文详细信息
Journal of noncommutative geometry | |
Universal deformation formula, formality and actions | |
article | |
Chiara Esposito1  Niek de Kleijn2  | |
[1] Università degli Studi di Salerno;Université Libre de Bruxelles CP 218 | |
关键词: Poisson action; formality; L -morphism; twisting; | |
DOI : 10.4171/jncg/478 | |
学科分类:神经科学 | |
来源: European Mathematical Society | |
【 摘 要 】
In this paper we provide a quantization via formality of Poisson actions of a triangular Lie algebra (g,r)(\mathfrak{g},r)(g,r) on a smooth manifold MMM. Using the formality of EEE-polydifferential operators for Lie algebroids EEE over MMM, we obtain a deformation quantization of MMM together with a quantum group Uρℏ(g)\mathscr{U}_{\rho_\hbar}(\mathfrak{g})Uρℏ(g) and a map of associated DGLA's. This motivates a definition of quantum action in terms of L∞L_\inftyL∞-morphisms which generalizes the well-known definition given by Drinfeld.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307150000531ZK.pdf | 461KB | download |