期刊论文详细信息
Journal of Data Science
Is the Group Structure Important in Grouped Functional Time Series?
article
Yang Yang1  Han Lin Shang2 
[1] Department of Econometrics and Business Statistics, Monash University;Department of Actuarial Studies and Business Analytics, Level 7, 4 Eastern Road, Macquarie University
关键词: dynamic principal component analysis;    forecast reconciliation;    Japanese sub-national age-specific mortality rates;    long-run covariance function;    multivariate functional principal component analysis;   
DOI  :  10.6339/21-JDS1031
学科分类:土木及结构工程学
来源: JDS
PDF
【 摘 要 】

We study the importance of group structure in grouped functional time series. Due to the non-uniqueness of group structure, we investigate different disaggregation structures in grouped functional time series. We address a practical question on whether or not the group structure can affect forecast accuracy. Using a dynamic multivariate functional time series method, we consider joint modeling and forecasting multiple series. Illustrated by Japanese sub-national age-specific mortality rates from 1975 to 2016, we investigate one- to 15-step-ahead point and interval forecast accuracies for the two group structures.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307150000481ZK.pdf 532KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:1次