期刊论文详细信息
Journal of Data Science
Statistical Inference for Two Weibull Populations Based on Joint Progressive Type-I Censored Scheme
article
Osama E. Abo-Kasem1  Mazen M. Nassar1 
[1] Department of Statistics, Faculty of Commerce, Zagazig University
关键词: Joint progressive Type-I censored scheme;    Weibull distribution;    Maximum likelihood estimation;    Confidence bounds;    Bayesian estimation;   
DOI  :  10.6339/JDS.201904_17(2).0006
学科分类:土木及结构工程学
来源: JDS
PDF
【 摘 要 】

In this paper, maximum likelihood and Bayesian methods of estimation are used to estimate the unknown parameters of two Weibull populations with the same shape parameter under joint progressive Type-I (JPT-I) censoring scheme. Bayes estimates of the parameters are obtained based on squared error and LINEX loss functions under the assumption of independent gamma priors. We propose to apply Markov Chain Monte Carlo (MCMC) technique to carry out a Bayesian estimation procedure. The approximate confidence intervals and the credible intervals for the unknown parameters are also obtained. Finally, we analyze a one real data set for illustration purpose.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307150000358ZK.pdf 918KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:1次