期刊论文详细信息
Groups Complexity Cryptology
Onto extensions of free groups
article
Sebastià Mijares1  Enric Ventura2 
[1] Departament d’Enginyeria Inform`atica i de les Comunicacions, Universitat Aut`onoma de Barcelona;Departament de Matem`atiques, Universitat Polit`ecnica de Catalunya, and Institut de Matem`atiques de la UPC-BarcelonaTech
关键词: Free group;    subgroup extension;    onto extension;    algebraic extension;    Stallingsgraph;   
DOI  :  10.46298/jgcc.2021.13.1.7036
来源: Episciences
PDF
【 摘 要 】

An extension of subgroups H 6 K 6 FA of the free group of rank |A| = r > 2is called onto when, for every ambient basis A0, the Stallings graph ΓA0 (K) is a quotient ofΓA0 (H). Algebraic extensions are onto and the converse implication was conjectured byMiasnikov–Ventura–Weil, and resolved in the negative, first by Parzanchevski–Puder forrank r = 2, and recently by Kolodner for general rank. In this note we study propertiesof this new type of extension among free groups (as well as the fully onto variant), andinvestigate their corresponding closure operators. Interestingly, the natural attempt for adual notion –into extensions– becomes trivial, making a Takahasi type theorem not possiblein this setting.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307140004781ZK.pdf 403KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次