| Journal of Biometrics & Biostatistics | |
| A Bayesian Nonlinear Mixed-Effects Disease Progression Model | |
| article | |
| Seongho Kim1  Hyejeong Jang1  Dongfeng Wu2  Judith Abrams1  | |
| [1] Biostatistics Core, Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine;Departments of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville | |
| 关键词: Cancer screening; Nonlinear mixed-effects models; Sensitivity; Sojourn time; | |
| DOI : 10.4172/2155-6180.1000271 | |
| 来源: Hilaris Publisher | |
PDF
|
|
【 摘 要 】
A nonlinear mixed-effects approach is developed for disease progression models that incorporate variation in age in a Bayesian framework. We further generalize the probability model for sensitivity to depend on age at diagnosis, time spent in the preclinical state and sojourn time. The developed models are then applied to the Johns Hopkins Lung Project data and the Health Insurance Plan for Greater New York data using Bayesian Markov chain Monte Carlo and are compared with the estimation method that does not consider random-effects from age. Using the developed models, we obtain not only age-specific individual-level distributions, but also population-level distributions of sensitivity, sojourn time and transition probability.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202307140003837ZK.pdf | 1259KB |
PDF