期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Geometrical Aspects of the Hamiltonization Problem of Dynamical Systems
article
Misael Avendaño-Camacho1  Claudio César García-Mendoza1  José Crispín Ruíz-PantaleónEduardo Velasco-Barreras1 
[1] Departamento de Matemáticas, Universidad de Sonora
关键词: Hamiltonian formulation;    Poisson manifold;    first integral;    unimodularity;    transversally invariant metric;    symmetry.;   
DOI  :  10.3842/SIGMA.2022.038
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

Some positive answers to the problem of endowing a dynamical system with a Hamiltonian formulation are presented within the class of Poisson structures in a geometric framework. We address this problem on orientable manifolds and by using decomposable Poisson structures. In the first case, the existence of a Hamiltonian formulation is ensured under the vanishing of some topological obstructions, improving a result of Gao. In the second case, we apply a variant of the Hojman construction to solve the problem for vector fields admitting a transversally invariant metric and, in particular, for infinitesimal generators of proper actions. Finally, we also consider the hamiltonization problem for Lie group actions and give solutions in the particular case in which the acting Lie group is a low-dimensional torus.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307120000575ZK.pdf 535KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:1次