期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Dirac Operators for the Dunkl Angular Momentum Algebra
article
Kieran Calvert1  Marcelo De Martino2 
[1] Department of Mathematics, University of Manchester;Department of Electronics and Information Systems, University of Ghent
关键词: Dirac operators;    Calogero-Moser angular momentum;    rational Cherednik algebras.;   
DOI  :  10.3842/SIGMA.2022.040
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

We define a family of Dirac operators for the Dunkl angular momentum algebra depending on certain central elements of the group algebra of the Pin cover of the Weyl group inherent to the rational Cherednik algebra. We prove an analogue of Vogan's conjecture for this family of operators and use this to show that the Dirac cohomology, when non-zero, determines the central character of representations of the angular momentum algebra. Furthermore, interpreting this algebra in the framework of (deformed) Howe dualities, we show that the natural Dirac element we define yields, up to scalars, a square root of the angular part of the Calogero-Moser Hamiltonian.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307120000573ZK.pdf 438KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:2次