期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Relating Stated Skein Algebras and Internal Skein Algebras
article
Benjamin Haïoun1 
[1] Institut de Mathématiques de Toulouse
关键词: quantum invariants;    skein theory;    category theory.;   
DOI  :  10.3842/SIGMA.2022.042
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

We give an explicit correspondence between stated skein algebras, which are defined via explicit relations on stated tangles in [Costantino F., Lê T.T.Q., arXiv:1907.11400], and internal skein algebras, which are defined as internal endomorphism algebras in free cocompletions of skein categories in [Ben-Zvi D., Brochier A., Jordan D., J. Topol. 11 (2018), 874-917, arXiv:1501.04652] or in [Gunningham S., Jordan D., Safronov P., arXiv:1908.05233]. Stated skein algebras are defined on surfaces with multiple boundary edges and we generalise internal skein algebras in this context. Now, one needs to distinguish between left and right boundary edges, and we explain this phenomenon on stated skein algebras using a half-twist. We prove excision properties of multi-edges internal skein algebras using excision properties of skein categories, and agreeing with excision properties of stated skein algebras when $\mathcal{V} = \mathcal{U}_{q^2}(\mathfrak{sl}_2)\text{-}{\rm mod}^{\rm fin}$. Our proofs are mostly based on skein theory and we do not require the reader to be familiar with the formalism of higher categories.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307120000571ZK.pdf 819KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:2次