Electronic Journal of Differential Equations | |
Integrodifferential equations of mixed type on time scales with Delta-HK and Delta-HKP integrals | |
article | |
Aneta Sikorska-Nowak1  | |
[1] Faculty of Mathematics and Computer Science Adam Mickiewicz University Uniwersytetu Poznanskiego 4 61-614 Poznan | |
关键词: Integrodifferential equations; nonlinear Volterra integral equation; time scales; Henstock-Kurzweil delta integral; HL delta integral; Banach space; Henstock-Kurzweil-Pettis delta integral; fixed point; measure of noncompactness; Caratheodory solutions; pseudo-solution; | |
DOI : 10.58997/ejde.2023.29 | |
学科分类:数学(综合) | |
来源: Texas State University | |
【 摘 要 】
In this article we prove the existence of solutions to the integrodifferential equation of mixed type $$ \displaylines{ x^\Delta (t)=f \Big( t,x(t), \int_0^t k_1 (t,s)g(s,x(s)) \Delta s, \int_0^a k_2(t,s)h(s,x(s)) \Delta s \Big),\\ x(0)=x_0, \quad x_0 \in E,\; t \in I_a=[0,a] \cap \mathbb{T},\; a>0, }$$ where\(\mathbb{T}\)denotes a time scale (nonempty closed subset of realnumbers\(\mathbb{R}\)), Ia is a time scale interval. In the first part of this paper functions f,g,h are Caratheodory functions with values in a Banach space E and integrals are taken in the sense of Henstock-Kurzweil delta integrals, which generalizes the Henstock-Kurzweil integrals. In the second part f, g, h, x are weakly-weakly sequentially continuous functions and integrals are taken in the sense of Henstock-Kurzweil-Pettis delta integrals. Additionally, functions f, g, h satisfy some boundary conditions and conditions expressed in terms of measures of noncompactness.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307120000490ZK.pdf | 371KB | download |