Electronic Journal of Differential Equations | |
Existence and controllability for neutral partial differential inclusions nondenselly defined on a half-line | |
article | |
Nguyen Thi Van Anh1  Bui Thi Hai Yen2  | |
[1] Department of Mathematics Hanoi National University of Education No. 136 Xuan Thuy;Department of Mathematics Hoa Lu University Ninh Nhat | |
关键词: Hille-Yosida operators; neutral differential inclusions; multivalued maps; fixed point arguments; controllability; | |
DOI : 10.58997/ejde.2023.07 | |
学科分类:数学(综合) | |
来源: Texas State University | |
【 摘 要 】
In this article, we study the existence of the integral solution to the neutral functional differential inclusion $$ \displaylines{ \frac{d}{dt}\mathcal{D}y_t-A\mathcal{D}y_t-Ly_t \in F(t,y_t), \quad \text{for a.e. }t \in J:=[0,\infty),\\ y_0=\phi \in C_E=C([-r,0];E),\quad r>0, }$$ and the controllability of the corresponding neutral inclusion $$\displaylines{\frac{d}{dt}\mathcal{D}y_t-A\mathcal{D}y_t-Ly_t \in F(t,y_t)+Bu(t), \quad \text{for a.e. } t \in J,\\ y_0=\phi \in C_E, }$$ on a half-line via the nonlinear alternative of Leray-Schauder type for contractive multivalued mappings given by Frigon. We illustrate our results with applications to a neutral partialdifferential inclusion with diffusion, and to a neutral functional partial differential equation with obstacle constrains.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307120000468ZK.pdf | 417KB | download |