期刊论文详细信息
Electronic Journal of Differential Equations
Poisson measures on semi-direct products of infinite-dimensional Hilbert spaces
article
Richard C. Penney1  Roman Urban2 
[1] Department of Mathematics Purdue University 150 N. University St West Lafayette;Institute of Mathematics Wroclaw University Plac Grunwaldzki 2/4 50-384 Wroclaw
关键词: Poisson measure;    Gaussian measure;    Hilbert space;    Brownian motion;    evolution kernel;    diffusion processes.;   
DOI  :  10.58997/ejde.2022.04
学科分类:数学(综合)
来源: Texas State University
PDF
【 摘 要 】

Let "$G=X\rtimes A$where X and A are Hilbert spaces considered as additive groups and the A-action on G is diagonal in some orthonormal basis. We consider a particular second order left-invariant differential operator L on G which is analogous to the Laplacian on Rn. We prove the existence of "heat kernel" for L and give a probabilistic formula for it. We then prove that X is a "Poisson boundary" in a sense of Furstenberg for L with a (not necessarily) probabilistic measure ν on X called the "Poisson measure" for the operator L.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307120000378ZK.pdf 342KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次