期刊论文详细信息
| Statistics, Optimization and Information Computing | |
| Nonparametric Recursive Kernel Type Eestimators for the Moment Generating Function Under Censored Data | |
| article | |
| Salim Bouzebda1  Issam Elhattab1  Yousri Slaoui Slaoui2  NourElhouda Taachouche1  | |
| [1] LMAC, Université de Technologie de Compiégne;université de Poitiers | |
| 关键词: Moment generating function; Kernel type estimator; Stochastic approximation algorithm; Censored data; | |
| DOI : 10.19139/soic-2310-5070-1678 | |
| 来源: Istituto Superiore di Sanita | |
PDF
|
|
【 摘 要 】
We are mainly concerned with kernel-type estimators for the moment-generating function in the present paper. More precisely, we establish the central limit theorem with the characterization of the bias and the variance for the nonparametric recursive kernel-type estimators for the moment-generating function under some mild conditions in the censored data setting. Finally, we investigate the methodology’s performance for small samples through a short simulation study.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202307110001939ZK.pdf | 456KB |
PDF