期刊论文详细信息
Statistics, Optimization and Information Computing
Nonparametric Recursive Kernel Type Eestimators for the Moment Generating Function Under Censored Data
article
Salim Bouzebda1  Issam Elhattab1  Yousri Slaoui Slaoui2  NourElhouda Taachouche1 
[1] LMAC, Université de Technologie de Compiégne;université de Poitiers
关键词: Moment generating function;    Kernel type estimator;    Stochastic approximation algorithm;    Censored data;   
DOI  :  10.19139/soic-2310-5070-1678
来源: Istituto Superiore di Sanita
PDF
【 摘 要 】

We are mainly concerned with kernel-type estimators for the moment-generating function in the present paper. More precisely, we establish the central limit theorem with the characterization of the bias and the variance for the nonparametric recursive kernel-type estimators for the moment-generating function under some mild conditions in the censored data setting. Finally, we investigate the methodology’s performance for small samples through a short simulation study.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307110001939ZK.pdf 456KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:0次