期刊论文详细信息
PeerJ
The metabolomic profile of gamma-irradiated human hepatoma and muscle cells reveals metabolic changes consistent with the Warburg effect
article
Min Wang1  Adrian Keogh3  Susan Treves4  Jeffrey R. Idle2  Diren Beyoğlu2 
[1] Institute of Integrated TCM and West Medicine, Medical College, Lanzhou University, Lanzhou City, Gansu Province;Hepatology Research Group, Department of Clinical Research, University of Bern;Visceral and Transplantation Surgery, Department of Clinical Research, University of Bern;Departments of Anesthesia and Biomedicine, University Hospital Basel
关键词: Gamma-irradiation;    HepG2 cells;    HMCL-7304 myotubes;    Metabolomics;    GCMS;    Warburg effect;   
DOI  :  10.7717/peerj.1624
学科分类:社会科学、人文和艺术(综合)
来源: Inra
PDF
【 摘 要 】

The two human cell lines HepG2 from hepatoma and HMCL-7304 from striated muscle were γ-irradiated with doses between 0 and 4 Gy. Abundant γH2AX foci were observed at 4 Gy after 4 h of culture post-irradiation. Sham-irradiated cells showed no γH2AX foci and therefore no signs of radiation-induced double-strand DNA breaks. Flow cytometry indicated that 41.5% of HepG2 cells were in G2/M and this rose statistically significantly with increasing radiation dose reaching a plateau at ∼47%. Cell lysates from both cell lines were subjected to metabolomic analysis using Gas Chromatography-Mass Spectrometry (GCMS). A total of 46 metabolites could be identified by GCMS in HepG2 cell lysates and 29 in HMCL-7304 lysates, most of which occurred in HepG2 cells. Principal Components Analysis (PCA) showed a clear separation of sham, 1, 2 and 4 Gy doses. Orthogonal Projection to Latent Structures-Discriminant Analysis (OPLS-DA) revealed elevations in intracellular lactate, alanine, glucose, glucose 6-phosphate, fructose and 5-oxoproline, which were found by univariate statistics to be highly statistically significantly elevated at both 2 and 4 Gy compared with sham irradiated cells. These findings suggested upregulation of cytosolic aerobic glycolysis (the Warburg effect), with potential shunting of glucose through aldose reductase in the polyol pathway, and consumption of reduced Glutathione (GSH) due to γ-irradiation. In HMCL-7304 myotubes, a putative Warburg effect was also observed only at 2 Gy, albeit a lesser magnitude than in HepG2 cells. It is anticipated that these novel metabolic perturbations following γ-irradiation of cultured cells will lead to a fuller understanding of the mechanisms of tissue damage following ionizing radiation exposure.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307100015678ZK.pdf 3081KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:0次