PeerJ | |
Effects of species-dominated patches on soil organic carbon and total nitrogen storage in a degraded grassland in China | |
article | |
Yujuan Zhang1  Shiming Tang2  Shu Xie3  Kesi Liu3  Jinsheng Li3  Qian Chen3  Ding Huang3  Kun Wang3  | |
[1] Key Laboratory of Grassland Ecology and Restoration, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Science;Department of Ecology, School of Ecology and Environment, Inner Mongolia University;Department of Grassland Science, China Agricultural University | |
关键词: Monodominant species patch; Degraded grassland; Soil organic carbon; Soil total nitrogen; | |
DOI : 10.7717/peerj.6897 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: Inra | |
【 摘 要 】
Background Patchy vegetation is a very common phenomenon due to long-term overgrazing in degraded steppe grasslands, which results in substantial uncertainty associated with soil carbon (C) and nitrogen (N) dynamics because of changes in the amount of litter accumulation and nutrition input into soil. Methods We investigated soil C and N stocks beneath three types of monodominant species patches according to community dominance. Stipa krylovii patches, Artemisia frigida patches, and Potentilla acaulis patches represent better to worse vegetation conditions in a grassland in northern China. Results The results revealed that the soil C stock (0–40 cm) changed significantly, from 84.7 to 95.7 Mg ha−1, and that the soil organic carbon content (0–10 cm) and microbial biomass carbon (0–10 and 10–20 cm) varied remarkably among the different monodominant species communities (P < 0.05). However, soil total nitrogen and microbial biomass nitrogen showed no significant differences among different plant patches in the top 0–20 cm of topsoil. The soil C stocks under the P. acaulis and S. krylovii patches were greater than that under the A. frigida patch. Our study implies that accurate estimates of soil C and N storage in degenerated grassland require integrated analyses of the concurrent effects of differences in plant community composition.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307100010507ZK.pdf | 2990KB | download |