期刊论文详细信息
PeerJ
Characterization of carbonate fraction of the Atlantic bluefin tuna fin spine bone matrix for stable isotope analysis
article
Patricia L. Luque1  María Belén Sanchez-Ilárduya2  Alfredo Sarmiento3  Hilario Murua1  Haritz Arrizabalaga1 
[1] Marine Research Division;Advanced Research Facilities ,(SGIker)/ X-ray Photoelectron Spectroscopy Laboratory ,(XPS)/Faculty of Science and Technology, University of the Basque Country;Advanced Research Facilities ,(Sgiker) / Coupled Multispectroscopy Singular Laboratory ,(Raman-LASPEA)/ Faculty of Medicine and Odontology, University of the Basque Country
关键词: Fin spine;    Inorganic matrix;    Raman spectroscopy;    Thunnus thynnus;    XPS;    FTIR;    Isotope analysis;   
DOI  :  10.7717/peerj.7176
学科分类:社会科学、人文和艺术(综合)
来源: Inra
PDF
【 摘 要 】

The mineral component of fish otoliths (ear bones), which is aragonitic calcium carbonate (CaCO3), makes this structure the preferred sample choice for measuring biological carbon and oxygen-stable isotopes in order to address fundamental questions in fish ecology and fisheries science. The main drawback is that the removal of otoliths requires sacrificing the specimen, which is particularly impractical for endangered and commercially valuable species such as Atlantic bluefin tuna (Thunnus thynnus) (ABFT). This study explores the suitability of using the first dorsal fin spine bone of ABFT as a non-lethal alternative to otolith analysis or as a complementary hard structure. The fin spines of freshly caught ABFT were collected to identify carbonate ions within the mineral matrix (i.e., hydroxyapatite) and to determine the nature of the carbonate substitution within the crystal lattice, knowledge which is crucial for correct measurement and ecological interpretation of oxygen and carbon stable isotopes of carbonates. Fin spine sections were analyzed via X-ray Photoelectron Spectroscopy (XPS), Raman Spectroscopy, and Fourier Transform InfraRed (FTIR). The XPS survey analysis showed signals of Ca, O, and P (three compositional elements that comprise hydroxyapatite). The Raman and FTIR techniques showed evidence of carbonate ions within the hydroxyapatite matrix, with the IR spectra being the most powerful for identifying the type B carbonate substitution as shown by the carbonate band in the v2 CO32− domain at ∼872 cm−1. The results of this study confirmed the presence of carbonate ions within the mineral matrix of the fin spine bone of ABFT, showing the feasibility of using this calcified structure for analysis of stable isotopes. Overall, our findings will facilitate new approaches to safeguarding commercially valuable and endangered/protected fish species and will open new research avenues to improve fisheries management and species conservation strategies.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307100010063ZK.pdf 773KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:3次