期刊论文详细信息
PeerJ
Effects of field-grown transgenic switchgrass carbon inputs on soil organic carbon cycling
article
Sutie Xu1  Sarah L. Ottinger1  Sean M. Schaeffer1  Jennifer M. DeBruyn1  C. Neal Stewart Jr.2  Mitra Mazarei2  Sindhu Jagadamma1 
[1] Department of Biosystems Engineering and Soil Science, University of Tennessee;Department of Plant Sciences, University of Tennessee;BioEnergy Science Center and Center for Bioenergy Innovations, Oak Ridge National Laboratory
关键词: Transgenic switchgrass;    Lignin downregulation;    Soil organic carbon;    Active carbon;    Soil respiration;    Soil quality;   
DOI  :  10.7717/peerj.7887
学科分类:社会科学、人文和艺术(综合)
来源: Inra
PDF
【 摘 要 】

Genetic engineering has been used to decrease the lignin content and to change the lignin composition of switchgrass (Panicum virgatum L.) to decrease cell wall recalcitrance to enable more efficient cellulosic biofuel production. Previous greenhouse and field studies showed that downregulation of the gene encoding switchgrass caffeic acid O-methyltransferase (COMT) and overexpression of the switchgrass PvMYB4 (MYB4) gene effectively improved ethanol yield. To understand potential environmental impacts of cultivating these transgenic bioenergy crops in the field, we quantified the effects of field cultivation of transgenic switchgrass on soil organic carbon (SOC) dynamics. Total and active SOC as well as soil respiration were measured in soils grown with two COMT-downregulated transgenic lines (COMT2 and COMT3), three MYB4-overexpressed transgenic lines (L1, L6, and L8), and their corresponding non-transgenic controls. No differences in total SOC, dissolved organic carbon (DOC), and permanganate oxidizable carbon (POXC) were detected between transgenic and non-transgenic treatments for both COMT (10.4–11.1 g kg−1 for SOC, 60.0–64.8 mg kg−1 for DOC, and 299–384 mg kg−1 for POXC) and MYB4 lines (6.89–8.21 g kg−1 for SOC, 56.0–61.1 mg kg−1 for DOC, and 177–199 mg kg−1 for POXC). Soil CO2-carbon (CO2-C) production from the COMT2 transgenic line was not significantly different from its non-transgenic control. In contrast, the COMT3 transgenic line had greater soil CO2-C production than its non-transgenic control (210 vs. 165 µg g−1) after 72 days of laboratory incubation. Combining the improvement in ethanol yield and biomass production reported in previous studies with negligible change in SOC and soil respiration, COMT2 could be a better biofuel feedstock than COMT3 for environmental conservation and cost-effective biofuel production. On the other hand, MYB4 transgenic line L8 produced more biomass and total ethanol per hectare while it released more CO2-C than the control (253 vs. 207 µg g−1). Long-term in situ monitoring of transgenic switchgrass systems using a suite of soil and environmental variables is needed to determine the sustainability of growing genetically modified bioenergy crops.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307100009507ZK.pdf 979KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:5次