期刊论文详细信息
PeerJ
Light quality affects the proliferation of in vitro cultured plantlets of Camellia oleifera Huajin
article
Chaoyin He1  Yanling Zeng1  Yuzhong Fu1  Jiahao Wu1  Qin Liang1 
[1] College of Forestry, Central South University of Forestry and Technology;Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology;Key Lab of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology
关键词: Camellia oleifera;    Light-emitting diode;    Light quality;    Proliferation;    In vitro culture;   
DOI  :  10.7717/peerj.10016
学科分类:社会科学、人文和艺术(综合)
来源: Inra
PDF
【 摘 要 】

BackgroundCamellia oleifera is an important oil-yielding woody plant native to China. Tea oil extracted from the seeds is rich in health-beneficial compounds. Huajin is a high-yielding elite variety of C. oleifera, with large fruits and remarkable resilience, widely cultivated in southern China; however, its seedling quality tends to be uneven. At present, techniques such as grafting, and cuttings are primarily adopted to propagate C. oleifera. These approaches are susceptible to environmental constraints owing to the long growth period, resulting in the lack of C. oleifera seedlings. Methods to make the cultivation more economical are warranted; this can be facilitated by tissue culture technology to provide good-quality seedlings in a short time.MethodsIn vitro cultured plantlets of C. oleifera Huajin were exposed to red light (RL), blue light (BL), red:blue light at a 4:1 ratio (R4:B1), and red:blue light at a 1:4 ratio (R1:B4); white light (WL) was used as the control treatment. To investigate the influence of light spectral quality on the proliferation coefficient, photosynthetic pigments, soluble proteins, plant height, leaf shape, Rubisco enzyme activity, and stomata and leaf anatomical features.ResultsThe highest proliferation coefficient was observed under combined red and blue (4:1) light. In addition, this treatment resulted in the second highest chlorophyll content, the thickest palisade and spongy tissues, and consequently, the thickest leaves. The same treatment resulted in the second highest stomatal density, albeit concomitantly with the smallest average stomatal length and width.DiscussionThese results indicate that high-quality propagation of Huajin shoots can be achieved by culturing the plants in vitro under a combination of red and blue (4:1) lights. Previous studies have shown that red and blue lights improve rooting and transplanting rates of tissue culture seedlings. Hence, future research should focus on the effect of light quality on rooting and transplanting of tissue culture plantlets of Huajin and its specific molecular mechanisms.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307100007360ZK.pdf 571KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:0次