PeerJ | |
SKP1-like protein, CrSKP1-e, interacts with pollen-specific F-box proteins and assembles into SCF-type E3 complex in ‘Wuzishatangju’ ( Citrus reticulata Blanco) pollen | |
article | |
Yi Ren1  Qingzhu Hua1  Jiayan Pan1  Zhike Zhang1  Jietang Zhao1  Xinhua He2  Yonghua Qin1  Guibing Hu1  | |
[1] State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University;State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, Guangxi University | |
关键词: Citrus retuculata Blanco; Self-incompatibility; SCF complex; F-box; SKP1-like; Cullin1; | |
DOI : 10.7717/peerj.10578 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: Inra | |
【 摘 要 】
S-ribonuclease (S-RNase)-based self-incompatibility (SI) mechanisms have been extensively studied in Solanaceae, Rosaceae and Plantaginaceae. S-RNase-based SI is controlled by two closely related genes, S-RNase and S-locus F-box (SLF), located at a polymorphic S-locus. In the SI system, the SCF-type (SKP1-CUL1-F-box-RBX1) complex functions as an E3 ubiquitin ligase complex for ubiquitination of non-self S-RNase. Pummelo (Citrus grandis) and several mandarin cultivars are suggested to utilize an S-RNase-based SI system. However, the molecular mechanism of the non-S-factors involved in the SI reaction is not straightforward in Citrus. To investigate the SCF-type E3 complex responsible for the SI reaction in mandarin, SLF, SKP1-like and CUL1 candidates potentially involved in the SI reaction of ‘Wuzishatangju’ (Citrus reticulata Blanco) were identified based on the genome-wide identification and expression analyses. Sixteen pollen-specific F-box genes (CrFBX1-CrFBX16), one pollen-specific SKP1-like gene (CrSKP1-e) and two CUL1 genes (CrCUL1A and CrCUL1B) were identified and cloned from ‘Wuzishatangju’. Yeast two-hybrid (Y2H) and in vitro binding assays showed that five CrFBX proteins could bind to CrSKP1-e, which is an ortholog of SSK1 (SLF-interacting-SKP1-like), a non-S-factor responsible for the SI reaction. Luciferase complementation imaging (LCI) and in vitro binding assays also showed that CrSKP1-e interacts with the N-terminal region of both CrCUL1A and CrCUL1B. These results indicate that CrSKP1-e may serve as a functional member of the SCF-type E3 ubiquitin ligase complex in ‘Wuzishatangju’.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307100006855ZK.pdf | 7994KB | download |