期刊论文详细信息
PeerJ
PhyloPrimer: a taxon-specific oligonucleotide design platform
article
Gilda Varliero1  Jared Wray1  Cédric Malandain2  Gary Barker1 
[1] School of Biological Sciences, University of Bristol;Environmental Expertise
关键词: Oligo design;    Primers;    Consensus sequence;    Taxon specificity;    PCR;    Environmental sample;    Bioinformatics pipeline;   
DOI  :  10.7717/peerj.11120
学科分类:社会科学、人文和艺术(综合)
来源: Inra
PDF
【 摘 要 】

Many environmental and biomedical biomonitoring and detection studies aim to explore the presence of specific organisms or gene functionalities in microbiome samples. In such cases, when the study hypotheses can be answered with the exploration of a small number of genes, a targeted PCR-approach is appropriate. However, due to the complexity of environmental microbial communities, the design of specific primers is challenging and can lead to non-specific results. We designed PhyloPrimer, the first user-friendly platform to semi-automate the design of taxon-specific oligos (i.e., PCR primers) for a gene of interest. The main strength of PhyloPrimer is the ability to retrieve and align GenBank gene sequences matching the user’s input, and to explore their relationships through an online dynamic tree. PhyloPrimer then designs oligos specific to the gene sequences selected from the tree and uses the tree non-selected sequences to look for and maximize oligo differences between targeted and non-targeted sequences, therefore increasing oligo taxon-specificity (positive/negative consensus approach). Designed oligos are then checked for the presence of secondary structure with the nearest-neighbor (NN) calculation and the presence of off-target matches with in silico PCR tests, also processing oligos with degenerate bases. Whilst the main function of PhyloPrimer is the design of taxon-specific oligos (down to the species level), the software can also be used for designing oligos to target a gene without any taxonomic specificity, for designing oligos from preselected sequences and for checking predesigned oligos. We validated the pipeline on four commercially available microbial mock communities using PhyloPrimer to design genus- and species-specific primers for the detection of Streptococcus species in the mock communities. The software performed well on these mock microbial communities and can be found at https://www.cerealsdb.uk.net/cerealgenomics/phyloprimer.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307100006109ZK.pdf 792KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:3次