PeerJ | |
Discriminating three motor imagery states of the same joint for brain-computer interface | |
article | |
Shan Guan1  Jixian Li1  Fuwang Wang1  Zhen Yuan1  Xiaogang Kang1  Bin Lu1  | |
[1] School of Mechanical Engineering, Northeast Electric Power University | |
关键词: Brain-computer interface; Motor imagery; Local mean decomposition; Cloud model; Common spatial pattern; Multi-objective grey wolf optimizer; Twin support vector machine; | |
DOI : 10.7717/peerj.12027 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: Inra | |
【 摘 要 】
The classification of electroencephalography (EEG) induced by the same joint is one of the major challenges for brain-computer interface (BCI) systems. In this paper, we propose a new framework, which includes two parts, feature extraction and classification. Based on local mean decomposition (LMD), cloud model, and common spatial pattern (CSP), a feature extraction method called LMD-CSP is proposed to extract distinguishable features. In order to improve the classification results multi-objective grey wolf optimization twin support vector machine (MOGWO-TWSVM) is applied to discriminate the extracted features. We evaluated the performance of the proposed framework on our laboratory data sets with three motor imagery (MI) tasks of the same joint (shoulder abduction, extension, and flexion), and the average classification accuracy was 91.27%. Further comparison with several widely used methods showed that the proposed method had better performance in feature extraction and pattern classification. Overall, this study can be used for developing high-performance BCI systems, enabling individuals to control external devices intuitively and naturally.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307100005419ZK.pdf | 820KB | download |