期刊论文详细信息
PeerJ
Response of soil microbial community to plant composition changes in broad-leaved forests of the karst area in Mid-Subtropical China
article
Liling Liu1  Ninghua Zhu1  Guangyi Zhou2  Peng Dang1  Xiaowei Yang1  Liqiong Qiu1  Muyi Huang1  Yingyun Gong1  Suya Zhao1  Jie Chen2 
[1] Central South University of Forestry and Technology;Research Institute of Tropical Forestry;Jianfengling National Key Field Research Station for Tropical Forest Ecosystem
关键词: Vegetation composition;    Microbial community;    Soil nutrients;    Plant diversity;    Karst ecosystem;    Cryptomeria japonica;   
DOI  :  10.7717/peerj.12739
学科分类:社会科学、人文和艺术(综合)
来源: Inra
PDF
【 摘 要 】

The rapid growth and expansion ofCryptomeria japonica (Thunb. ex L. f.) D. Don in karst area strongly affects plant composition of native deciduous broad-leaved forest, which seriously threat ecosystem function and service. Given the importance of soil microorganisms in regulating nutrients cycling and plant species coexistence, understanding soil microbial attributes and their relationships with soil and vegetation features in forests harboring different C. japonica abundance will help understanding the drivers of ecosystem function changes. Here we examined the diversity and composition of soil bacterial and fungal communities and their correlations with plant diversity as well as soil physicochemical properties in karst broad-leaved forests with different relative abundances of C. japonica (i.e., a high, moderate, low and no proportion level with a stem density of 1,487, 538, 156 and 0 plant/hm2, respectively) in Mid-Subtropical China. We found that soil pH decreased while soil water content (SWC), total nitrogen (TN), total phosphorus (TP) and total potassium (TK) tended to increase with the increase in C. japonica abundance. In contrast, soil available nitrogen (AN), available phosphorus (AP) and available potassium (AK) content declined by 26.1%∼49.3% under the high level of C. japonica abundance. A gradual decrease in relative abundance of Acidobacteria and Chloroflexi while a pronounced increase in relative abundance of Ascomycota and Basidiomycota were observed with increase of C. japonica abundance. Alternations in bacterial composition were closely related to changes in AP and AK, while the change of fungal structure was mainly related to SWC, soil organic carbon (SOC) and pH, indicating that bacterial community was sensitive to declines in soil available nutrients and fungal structure was sensitive to changes in soil physicochemical properties (i.e., pH and SWC) and organic carbon resource. Understory plants had the highest α-diversity in forest containing moderate abundance of C. japonica, which might be related to the high bacterial diversity. Our findings suggest conservation of soil bacterial and fungal taxa that are responsible for nutrients availability and carbon sequestration is of great significance for improving the resistance of natural deciduous broad-leaved forests to the rapid spread of C. japonica in karst areas. Moreover, Acidobacteria, Chloroflexi, Ascomycota and Basidiomycota are potential indicators for soil properties changes, which should be taken into consideration in karst forest managements.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307100004421ZK.pdf 1547KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:1次