期刊论文详细信息
PeerJ
Forecasting effects of transport infrastructure on endangered tigers: a tool for conservation planning
article
Neil H. Carter1  Narendra Pradhan2  Krishna Hengaju2  Chinmay Sonawane3  Abigail H. Sage4  Volker Grimm5 
[1]University of Michigan
[2]International Union for Conservation of Nature
[3]Stanford University
[4]US Fish and Wildlife Service
[5]Helmholtz Centre for Environmental Research –UFZ
关键词: Agent-based model;    Carnivore;    Conservation;    Railway;    Road;    Protected area;    Infrastructure;   
DOI  :  10.7717/peerj.13472
学科分类:社会科学、人文和艺术(综合)
来源: Inra
PDF
【 摘 要 】
The rapid development of transport infrastructure is a major threat to endangered species worldwide. Roads and railways can increase animal mortality, fragment habitats, and exacerbate other threats to biodiversity. Predictive models that forecast the future impacts to endangered species can guide land-use planning in ways that proactively reduce the negative effects of transport infrastructure. Agent-based models are well suited for predictive scenario testing, yet their application to endangered species conservation is rare. Here, we developed a spatially explicit, agent-based model to forecast the effects of transport infrastructure on an isolated tiger (Panthera tigris) population in Nepal’s Chitwan National Park—a global biodiversity hotspot. Specifically, our model evaluated the independent and interactive effects of two mechanisms by which transport infrastructure may affect tigers: (a) increasing tiger mortality, e.g., via collisions with vehicles, and (b) depleting prey near infrastructure. We projected potential impacts on tiger population dynamics based on the: (i) existing transportation network in and near the park, and (ii) the inclusion of a proposed railway intersecting through the park’s buffer zone. Our model predicted that existing roads would kill 46 tigers over 20 years via increased mortality, and reduced the adult tiger population by 39% (133 to 81). Adding the proposed railway directly killed 10 more tigers over those 20 years; deaths that reduced the overall tiger population by 30 more individuals (81 to 51). Road-induced mortality also decreased the proportion of time a tiger occupied a given site by 5 years in the 20-year simulation. Interestingly, we found that transportation-induced depletion of prey decreased tiger occupancy by nearly 20% in sites close to roads and the railway, thereby reducing tiger exposure to transportation-induced mortality. The results of our model constitute a strong argument for taking into account prey distributions into the planning of roads and railways. Our model can promote tiger-friendly transportation development, for example, by improving Environmental Impact Assessments, identifying “no go” zones where transport infrastructure should be prohibited, and recommending alternative placement of roads and railways.
【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307100004021ZK.pdf 7201KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次