期刊论文详细信息
PeerJ
Overexpression of AmCBF1 enhances drought and cold stress tolerance, and improves photosynthesis in transgenic cotton
article
Guoqing Lu1  Lihua Wang1  Lili Zhou1  Xiaofeng Su1  Huiming Guo1  Hongmei Cheng1 
[1] Chinese Academy of Agricultural Sciences, Biotechnology Research Institute;Tianjin Academy of Agricultural Sciences, Institute of Germplasm Resources and Biotechnology
关键词: AmCBF1;    Gene expression;    Transgenic cotton;    Stress tolerance;    Photosynthesis;   
DOI  :  10.7717/peerj.13422
学科分类:社会科学、人文和艺术(综合)
来源: Inra
PDF
【 摘 要 】

China’s main cotton production area is located in the northwest where abiotic stresses, particularly cold and drought, have serious effects on cotton production. In this study, Ammopiptanthus mongolicus C-repeat-binding factor (AmCBF1) isolated from the shrub Ammopiptanthus mongolicus was inserted into upland cotton (Gossypium hirsutum L.) cultivar R15 to evaluate the potential benefits of this gene. Two transgenic lines were selected, and the transgene insertion site was identified using whole-genome sequencing. The results showed that AmCBF1 was incorporated into the cotton genome as a single copy. Transgenic plants had distinctly higher relative water content (RWC), chlorophyll content, soluble sugar content, and lower ion leakage than R15 after drought and cold stress. Some characteristics, such as the area of lower epidermal cells, stomatal density, and root to shoot ratio, varied significantly between transgenic cotton lines and R15. Although the photosynthetic ability of transgenic plants was inhibited after stress, the net photosynthetic rate, stomatal conductance, and transpiration rate in transgenic plants were significantly higher than in R15. This suggested that an enhanced stress tolerance and photosynthesis of transgenic cotton was achieved by overexpressing AmCBF1. All together, our results demonstrate that the new transgenic cotton germplasm has great application value against abiotic stresses, especially in the northwest inland area of China.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307100003977ZK.pdf 21452KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:3次