期刊论文详细信息
PeerJ
Estimating uncertainty in density surface models
article
David L. Miller1  Elizabeth A. Becker2  Karin A. Forney3  Jason J. Roberts5  Ana Cañadas5  Robert S. Schick5 
[1] Centre for Research into Ecological & Environmental Modelling and School of Mathematics & Statistics, University of St Andrews;Ocean Associates, Inc. under contract to Marine Mammal and Turtle Division, Southwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration;Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration;Moss Landing Marine Laboratories, San Jose State University;Marine Geospatial Ecology Laboratory, Nicholas School of the Environment, Duke University
关键词: Density surface models;    Distance sampling;    Uncertainty quantification;    Spatial modelling;    Species distribution modelling;    Model uncertainty;    Environmental uncertainty;   
DOI  :  10.7717/peerj.13950
学科分类:社会科学、人文和艺术(综合)
来源: Inra
PDF
【 摘 要 】

Providing uncertainty estimates for predictions derived from species distribution models is essential for management but there is little guidance on potential sources of uncertainty in predictions and how best to combine these. Here we show where uncertainty can arise in density surface models (a multi-stage spatial modelling approach for distance sampling data), focussing on cetacean density modelling. We propose an extensible, modular, hybrid analytical-simulation approach to encapsulate these sources. We provide example analyses of fin whales Balaenoptera physalus in the California Current Ecosystem.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307100003535ZK.pdf 4753KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:1次