期刊论文详细信息
Facta Universitatis. Series Mathematics and Informatics
A GENERALIZATION OF ORDER CONVERGENCE IN THE VECTOR LATTICES
article
Kazem Haghnejad Azar1 
[1] Faculty of Science, Department of Mathematics University of Mohaghegh Ardabili
关键词: order convergence;    vector lattice;    continuous operator;   
DOI  :  10.22190/FUMI210417036H
学科分类:社会科学、人文和艺术(综合)
来源: Univerzitet u Nishu / University of Nis
PDF
【 摘 要 】

Let $E$ be a sublattice of a vector lattice $F$.$\left( x_\alpha \right)\subseteq E$ is said to be $ F $-order convergent to a vector $ x $ (in symbols $ x_\alpha \xrightarrow{Fo} x $), whenever there exists another net $ \left(y_\alpha\right) $ in $F $ with the some index set satisfying $ y_\alpha\downarrow 0 $ in $F$ and $ \vert x_\alpha - x \vert \leq y_\alpha $ for all indexes $ \alpha $.If $F=E^{\sim\sim}$, this convergence is called $b$-order convergence and we write $ x_\alpha \xrightarrow{bo} x$. In this manuscript, first we study some properties of $Fo$-convergence nets and we extend same results to the general case. In the second part, we introduce $b$-order continuous operators and we invistegate some properties of this new concept. An operator $T$ between two vector lattices $E$ and $F$ is said to be $b$-order continuous, if $ x_\alpha \xrightarrow{bo} 0 $ in $E$ implies $ Tx_\alpha \xrightarrow{bo} 0$ in $F$.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307080003928ZK.pdf 370KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次