期刊论文详细信息
Applicable Analysis and Discrete Mathematics
COMBINATORIAL IDENTITIES INVOLVING THE CENTRAL COEFFICIENTS OF A SHEFFER MATRIX
article
Emanuele Munarini1 
[1] Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32
关键词: $r$-Lah numbers;    $r$-Stirling numbers;    Appell sequences;    Sheffer sequences;    Combinatorial Identities;   
DOI  :  10.2298/AADM180226017M
学科分类:社会科学、人文和艺术(综合)
来源: Univerzitet u Beogradu * Elektrotehnicki Fakultet / University of Belgrade, Faculty of Electrical Engineering
PDF
【 摘 要 】

Given m ∈ N, m ≥ 1, and a Sheffer matrix S = [sn,k]n,k≥0, we obtain the exponential generating series for the coefficients a+(m+1)na+mn −1 sa+(m+1)n,a+mn.Then, by using this series, we obtain two general combinatorial identities, and their specialization to r-Stirling, r-Lah and r-idempotent numbers. In particular, using this approach, we recover two well known binomial identities, namely Gould’s identity and Hagen-Rothe’s identity. Moreover, wegeneralize these results obtaining an exchange identity for a cross sequence(or for two Sheffer sequences) and an Abel-like identity for a cross sequence(or for an s-Appell sequence).

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307080003741ZK.pdf 468KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:1次