期刊论文详细信息
| Applicable Analysis and Discrete Mathematics | |
| A note on the Nordhaus-Gaddum type inequality to the second largest eigenvalue of a graph | |
| article | |
| Nair Abreu1  André E. Brondani1  Leonardo de Lima2  Carla Oliveira3  | |
| [1] Institution Federal Fluminense University, Instituto de Cincias Exatas Departamento de Matemtica;Federal University of Rio de Janeiro;ENCE | |
| 关键词: Nordhaus-Gaddum problem; adjacency matrix; upper bound; second largest eigenvalue; | |
| DOI : 10.2298/AADM1701123A | |
| 学科分类:社会科学、人文和艺术(综合) | |
| 来源: Univerzitet u Beogradu * Elektrotehnicki Fakultet / University of Belgrade, Faculty of Electrical Engineering | |
PDF
|
|
【 摘 要 】
Let G be a graph on n vertices and G its complement. In this paper, weprove a Nordhaus-Gaddum type inequality to the second largest eigenvalueof a graph G, λ2(G),λ2(G) + λ2(G) ≤ −1 + rn22− n + 1,when G is a graph with girth at least 5. Also, we show that the bound aboveis tight. Besides, we prove that this result holds for some classes of connectedgraphs such as trees, k−cyclic, regular bipartite and complete multipartitegraphs. Based on these facts, we conjecture that our result holds to anygraph.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202307080003662ZK.pdf | 356KB |
PDF