期刊论文详细信息
Applicable Analysis and Discrete Mathematics
A note on the Nordhaus-Gaddum type inequality to the second largest eigenvalue of a graph
article
Nair Abreu1  André E. Brondani1  Leonardo de Lima2  Carla Oliveira3 
[1] Institution Federal Fluminense University, Instituto de Cincias Exatas Departamento de Matemtica;Federal University of Rio de Janeiro;ENCE
关键词: Nordhaus-Gaddum problem;    adjacency matrix;    upper bound;    second largest eigenvalue;   
DOI  :  10.2298/AADM1701123A
学科分类:社会科学、人文和艺术(综合)
来源: Univerzitet u Beogradu * Elektrotehnicki Fakultet / University of Belgrade, Faculty of Electrical Engineering
PDF
【 摘 要 】

Let G be a graph on n vertices and G its complement. In this paper, weprove a Nordhaus-Gaddum type inequality to the second largest eigenvalueof a graph G, λ2(G),λ2(G) + λ2(G) ≤ −1 + rn22− n + 1,when G is a graph with girth at least 5. Also, we show that the bound aboveis tight. Besides, we prove that this result holds for some classes of connectedgraphs such as trees, k−cyclic, regular bipartite and complete multipartitegraphs. Based on these facts, we conjecture that our result holds to anygraph.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307080003662ZK.pdf 356KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:1次