期刊论文详细信息
Matematika
Predicting Top Five Cryptocurrency Prices via Linear Structural Time Series (STS) Approach
article
Nurazlina Abdul Rashid1  Mohd Tahir Ismail2  Noor Wahida Junus3 
[1] Mathematical Sciences Studies, College of Computing, Informatics and Media, Universiti Teknologi Mara;School of Mathematical Sciences, Universiti Sains Malaysia;Faculty of Science and Mathematics Sultan Idris Education University
关键词: Cryptocurrency;    Trend;    Behavior;    Nonstationary;    Price prediction;    Structural TimeSeries Optimisation;   
DOI  :  10.11113/matematika.v39.n1.1444
学科分类:社会科学、人文和艺术(综合)
来源: Universiti Teknologi Malaysia * Fakulti Sains
PDF
【 摘 要 】

Predicting cryptocurrency prices are difficult due to dynamic data. At the same time, the hidden market behavior of trend and seasonal components in the history data is also critical as it provides an idea of what the price pattern will be in the future. Hence, this research proposes to identify and model the hidden pattern behavior in terms of component time series instead of removing it via the linear structural time series (STS) model approach. This study focuses on the top five cryptocurrencies relying on the highest market capitalization. From the results obtained, the top five cryptocurrencies have a different trend model, either deterministic or stochastic, which relies on the behavior of data. The five cryptocurrencies also show the crypto winter event, where the trend is downward after six months every year. The linear STS is the best model for predicting three cryptocurrencies’ prices for nonstationary and volatility data behavior. It can also handle the hidden component behavior and is easy to interpret. Since the linear STS model can indirectly retain the information of data, it will assist investors and traders in accurately predicting cryptocurrency prices.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307080002194ZK.pdf 1946KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:3次