期刊论文详细信息
The Journal of Nuclear Medicine
Cure of Disseminated Human Lymphoma with [ 177 Lu]Lu-Ofatumumab in a Preclinical Model
article
Kyuhwan Shim1  Mark S. Longtine1  Diane S. Abou1  Mark J. Hoegger1  Richard S. Laforest1  Daniel L.J. Thorek1  Richard L. Wahl1 
[1] Mallinckrodt Institute of Radiology, Washington University School of Medicine;Department of Biomedical Engineering, Washington University;Department of Radiation Oncology, Washington University
关键词: CD20;    lymphoma;    targeted β-particle therapy;    radioimmunotherapy;    lutetium;   
DOI  :  10.2967/jnumed.122.264816
学科分类:医学(综合)
来源: Society of Nuclear Medicine
PDF
【 摘 要 】

Although immunotherapies that target CD20 on most non-Hodgkin lymphoma (NHL) cells have improved patient outcomes, current therapies are inadequate because many cases are, or become, refractory or undergo relapse. Here, we labelled the third-generation human anti-CD20 antibody ofatumumab with 177Lu, determined the in vitro characteristics of [177Lu]Lu-ofatumumab, estimated human dosimetry, and assayed tumor targeting and therapeutic efficacy in a murine model of disseminated NHL. Methods: CHX-A″-diethylenetriaminepentaacetic acid-[177Lu]Lu-ofatumumab was prepared. We evaluated radiochemical yield, purity, in vitro immunoreactivity, stability, (n = 7), affinity, and killing of CD20-expressing Raji cells (n = 3). Human dosimetry was estimated from biodistribution studies as percentage injected activity per gram using C57BL/6N mice. Tissue and organ biodistribution was determined in R2G2 immunodeficient mice with subcutaneous Raji-cell tumors. Therapy studies used R2G2 mice with disseminated human Raji-luc tumor cells (n = 10 mice/group). Four days after cell injection, the mice were left untreated or were treated with ofatumumab, 8.51 MBq of [177Lu]Lu-IgG, or 0.74 or 8.51 MBq of [177Lu]Lu-ofatumumab. Survival, weight, and bioluminescence were tracked. Results: Radiochemical yield was 93% ± 2%, radiochemical purity was 99% ± 1%, and specific activity was 401 ± 17 MBq/mg. Immunoreactivity was substantially preserved, and more than 75% of 177Lu remained chelated after 7 d in serum. [177Lu]Lu-ofatumumab specifically killed Raji-luc cells in vitro (P < 0.05). Dosimetry estimated that an effective dose for human administration is 0.36 mSv/MBq and that marrow may be the dose-limiting organ. Biodistribution in subcutaneous tumors 1, 3, and 7 d after [177Lu]Lu-ofatumumab injection was 11, 15, and 14 percentage injected activity per gram, respectively. In the therapy study, median survival of untreated mice was 19 d, not statistically different from mice treated with 8.51 MBq of [177Lu]Lu-IgG (25 d). Unlabeled ofatumumab increased survival to 46 d, similar to 0.74 MBq of [177Lu]Lu-ofatumumab (59 d), with both being superior to no treatment (P < 0.0003). Weight loss and increased tumor burden preceded death or killing of the animal for cause. In contrast, treatment with 8.51 MBq of [177221 d), permitted weight gain, eliminated detectable tumors, and was curative in 9 of 10 mice. Conclusion: [177Lu]Lu-ofatumumab shows favorable in vitro characteristics, localizes to tumor, and demonstrates curative therapeutic efficacy in a disseminated lymphoma model, showing potential for clinical translation to treat NHL.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307060004266ZK.pdf 1478KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:1次