期刊论文详细信息
iForest: Biogeosciences and Forestry
Predictive capacity of nine algorithms and an ensemble model to determine the geographic distribution of tree species
article
Juan Carlos Montoya-Jiménez1  José René Valdez-Lazalde1  Gregorio Ángeles-Perez1  Héctor Manuel De Los Santos-Posadas1  Gustavo Cruz-Cárdenas2 
[1] Postgrado en Ciencias Forestales. Colegio de Postgraduados. Campus Montecillo;Instituto Politécnico Nacional
关键词: TSS;    AUC;    BRT;    SVM;    MaxEnt;    Random Forests;    GAM;    Ensemble Model;   
DOI  :  10.3832/ifor4084-015
学科分类:社会科学、人文和艺术(综合)
来源: Societa Italiana di Selvicoltura ed Ecologia Forestale (S I S E F)
PDF
【 摘 要 】

0.72); the opposite was found in Bioclim and Domain (AUC<0.75 and <0.82; and TSS<0.5 and 0.055); on the contrary, Maxent and the ensemble model attained high predictive stability (CV<0.015). The ensemble model obtained greater performance and predictive stability in the predictions of the distribution of the 17 species of pines. The differences found in performance and predictive stability of the algorithms suggest that the ensemble model has the potential to model the distribution of tree species.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307060003719ZK.pdf 684KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次