Miskolc Mathematical Notes | |
Bounds for the generalized elliptic integral of the second kind | |
article | |
Xiaohui Zhang1  Zhixia Xing1  | |
[1] School of Science, Zhejiang Sci-Tech University | |
关键词: generalized elliptic integrals; Ramanujan’s constant; Gaussian hypergeometric function; Hersch-Pfluger distortion function; | |
DOI : 10.18514/MMN.2022.3828 | |
学科分类:数学(综合) | |
来源: Miskolci Egyetem | |
【 摘 要 】
For $a\in(0,1)$ and $r\in(0,1)$, let $\mathcal{E}_{a}(r)$ be the generalized elliptic integral of the second kind and $R(a)$ Ramanujan's constant. In this paper, we prove the following inequalities \begin{align*} \frac{\sin(\pi a)}{2(1-a)}+r'^2\left((1-a)\sin(\pi a)\log \left(\frac{e^{R(a)/2}}{r'}\right)-\gamma\right)<\mathcal{E}_{a}(r)\\ <\frac{\sin(\pi a)}{2(1-a)}+r'^2\left((1-a)\sin(\pi a)\log \left(\frac{e^{R(a)/2}}{r'}\right)-\delta\right) \end{align*} with the best possible constants $\gamma=\dfrac{1}{4}\sin(\pi a)$ and $\delta=\dfrac{\sin(\pi a)}{2(1-a)}+(1-a)\sin(\pi a)\dfrac{R(a)}{2}-\dfrac{\pi}{2}$.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307020000608ZK.pdf | 1017KB | download |