期刊论文详细信息
Miskolc Mathematical Notes
Bounds for the generalized elliptic integral of the second kind
article
Xiaohui Zhang1  Zhixia Xing1 
[1] School of Science, Zhejiang Sci-Tech University
关键词: generalized elliptic integrals;    Ramanujan’s constant;    Gaussian hypergeometric function;    Hersch-Pfluger distortion function;   
DOI  :  10.18514/MMN.2022.3828
学科分类:数学(综合)
来源: Miskolci Egyetem
PDF
【 摘 要 】

For $a\in(0,1)$ and $r\in(0,1)$, let $\mathcal{E}_{a}(r)$ be the generalized elliptic integral of the second kind and $R(a)$ Ramanujan's constant. In this paper, we prove the following inequalities \begin{align*} \frac{\sin(\pi a)}{2(1-a)}+r'^2\left((1-a)\sin(\pi a)\log \left(\frac{e^{R(a)/2}}{r'}\right)-\gamma\right)<\mathcal{E}_{a}(r)\\ <\frac{\sin(\pi a)}{2(1-a)}+r'^2\left((1-a)\sin(\pi a)\log \left(\frac{e^{R(a)/2}}{r'}\right)-\delta\right) \end{align*} with the best possible constants $\gamma=\dfrac{1}{4}\sin(\pi a)$ and $\delta=\dfrac{\sin(\pi a)}{2(1-a)}+(1-a)\sin(\pi a)\dfrac{R(a)}{2}-\dfrac{\pi}{2}$.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307020000608ZK.pdf 1017KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次