期刊论文详细信息
Miskolc Mathematical Notes | |
Existence of solution for a Dirichlet boundary value problem involving the p(x) Laplacian via a fixed point approach | |
article | |
Souad Ayadi1  Ozgur Ege2  | |
[1] Science Department of Matter, Faculty of Science, Djilali Bounaama University;Ege University, Faculty of Science, Department of Mathematics | |
关键词: p(x)-Laplacian; generalized Sobolev space; variable exponent; fixed point; | |
DOI : 10.18514/MMN.2022.4101 | |
学科分类:数学(综合) | |
来源: Miskolci Egyetem | |
【 摘 要 】
In this paper, we study the existence of a non-trivial solution in $W_{0}^{1,p(x)}(\Omega)$ for the problem $$\begin{cases}\Delta_{p(x)}u=f(x,u,\nabla u) \;\;{\rm in}\quad \Omega,\\ u=0\;\;{\rm in}\quad \Omega.\end{cases}$$ The proof is based on Schaefer's fixed point theorem.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307020000580ZK.pdf | 1020KB | download |