期刊论文详细信息
Engineering Proceedings
Prediction of Ultimate Bond Strength between Ultra-High Performance Concrete and Titanium Alloy Bars Using a Machine Learning Approach
article
Mahesh Acharya1  Luis Bedriñana2  Jared Cantrell1  Ankit Bhaukajee3  Mustafa Mashal1 
[1] Department of Civil & Environmental Engineering, Idaho State University;Department of Civil Engineering, Universidad de Ingenieria y Tecnologia—UTEC;Farm Bureau Mutual Insurance Company of Idaho
关键词: UHPC;    titanium alloy bars;    durability;    bond strength;    machine learning;    transfer learning;    concrete structures;   
DOI  :  10.3390/engproc2023036016
来源: mdpi
PDF
【 摘 要 】

This research discusses the viability of the next-generation novel materials, e.g., titanium alloy bars (TiABs) and ultra-high-performance concrete (UHPC) that have potential to be utilized in civil infrastructures, e.g., bridges, in combination with machine learning (ML) techniques. Since UHPC and TiABs have been demonstrated to be a realistic alternative to traditional construction materials for civil infrastructures, it is important to characterize bond performance of reinforcing, i.e., TiABs embedded in UHPC. The research utilizes improvement of ML techniques, e.g., transfer learning (TL) to predict the bond strength of TiABs in UHPC.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307010005177ZK.pdf 807KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:2次