Separations | |
High-Value Recovery of the Iron via Solvent Extraction from Waste Nickel-Cadmium Battery Sulfuric Acid Leachate Using Saponified D2EHPA | |
article | |
Lei Zhou1  Yongqing Zhang1  Lijin Zhang1  Xuefeng Wu1  Ran Jiang4  Lu Wang1  | |
[1] School of Environment and Energy, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology;The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education;State Key Laboratory of Pulp and Paper, South China University of Technology;The Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources | |
关键词: waste nickel-cadmium batteries; saponified D2EHPA; extraction of iron; iron oxalate; | |
DOI : 10.3390/separations10040251 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: mdpi | |
【 摘 要 】
A significant amount of iron from the waste nickel-cadmium (Ni-Cd) battery sulfuric acid leachate seriously hinders the separation and recovery of nickel and cadmium. Therefore, an efficient and economical way to remove iron from this leachate is desired. This paper demonstrated the efficient iron extraction from a simulated Ni-Cd battery sulfuric acid leachate with saponified Di (2-ethylhexyl) phosphoric acid (D2EHPA). The iron-loaded D2EHPA was then stripped with oxalic acid and the iron was recovered in the form of iron oxalate. This process realizes the efficient separation and high-value recovery of iron. The results showed that the saponification of the D2EHPA greatly promoted the extraction of iron from the Ni-Cd battery sulfuric acid leachate. Under suitable conditions, the iron’s single-stage extraction rate was more than 95%, and the iron’s single-stage stripping rate was more than 85%. Moreover, the iron’s extraction rate was more than 99% after two theoretical extraction stages, and the stripping rate was 95.6% after two theoretical stripping stages. The slope analysis determines that five molecules of D2EHPA were combined with one molecule of Fe3+ in the extraction process. The FT-IR analysis shows that the extraction mechanism of Fe3+ using the saponified D2EHPA is a cation exchange. These results can help guide the industrial separation and recovery of iron from the waste Ni-Cd battery sulfuric acid leachate.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202307010004812ZK.pdf | 5035KB | download |