期刊论文详细信息
Fractal and Fractional
Mittag–Leffler Functions in Discrete Time
article
Ferhan M. Atıcı1  Samuel Chang2  Jagan Mohan Jonnalagadda3 
[1] Department of Mathematics, Western Kentucky University;Booth School of Business, University of Chicago;Department of Mathematics, Birla Institute of Technology and Science Pilani
关键词: discrete Mittag–Leffler function;    matrix Mittag–Leffler function;    nabla operator;    fractional h-discrete calculus;   
DOI  :  10.3390/fractalfract7030254
学科分类:社会科学、人文和艺术(综合)
来源: mdpi
PDF
【 摘 要 】

In this paper, we give an efficient way to calculate the values of the Mittag–Leffler (h-ML) function defined in discrete time h N, where h0 is a real number. We construct a matrix equation that represents an iteration scheme obtained from a fractional h-difference equation with an initial condition. Fractional h-discrete operators are defined according to the Nabla operator and the Riemann–Liouville definition. Some figures and examples are given to illustrate this new calculation technique for the h-ML function in discrete time. The h-ML function with a square matrix variable in a square matrix form is also given after proving the Putzer algorithm.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307010003338ZK.pdf 580KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次