期刊论文详细信息
Electronic Transactions on Numerical Analysis
Improved bisection eigenvalue method for band symmetric Toeplitz matrices
article
Yuli Eidelman1  Iulian Haimovici1 
[1] School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University
关键词: Toeplitz;    quasiseparable;    banded matrices;    eigenstructure;    inequalities;    Sturm with bisection;   
DOI  :  10.1553/etna_vol58s316
学科分类:数学(综合)
来源: Kent State University * Institute of Computational Mathematics
PDF
【 摘 要 】

We apply a general bisection eigenvalue algorithm, developed for Hermitian matrices with quasiseparable representations, to the particular case of real band symmetric Toeplitz matrices. We show that every band symmetric Toeplitz matrix $T_q$ with bandwidth $q$ admits the representation $T_q=A_q+H_q$, where the eigendata of $A_q$ are obtained explicitly and the matrix $H_q$ has nonzero entries only in two diagonal blocks of size $(q-1)\times (q-1)$. Based on this representation, one obtains an interlacing property of the eigenvalues of the matrix $T_q$ and the known eigenvalues of the matrix $A_q$. This allows us to essentially improve the performance of the bisection eigenvalue algorithm. We also present an algorithm to compute the corresponding eigenvectors.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307010000646ZK.pdf 426KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:2次