期刊论文详细信息
Electronic Transactions on Numerical Analysis
On multidimensional sinc-Gauss sampling formulas for analytic functions
article
Rashad M. Asharabi1  Felwah H. Al-Haddad1 
[1] Department of Mathematics, College of Arts and Sciences, Najran University
关键词: multidimensional sinc-Gauss sampling formula;    multivariate analytic function;    localization operator;    error estimate;   
DOI  :  10.1553/etna_vol55s242
学科分类:数学(综合)
来源: Kent State University * Institute of Computational Mathematics
PDF
【 摘 要 】

Using complex analysis, we present new error estimates for multidimensional sinc-Gauss sampling formulas for multivariate analytic functions and their partial derivatives, which are valid for wide classes of functions. The first class consists of all $n$-variate entire functions of exponential type satisfying a decay condition, while the second is the class of $n$-variate analytic functions defined on a multidimensional horizontal strip. We show that the approximation error decays exponentially with respect to the localization parameter $N$. This work extends former results of the first author and J. Prestin, [IMA J. Numer. Anal., 36 (2016), pp. 851–871] and [Numer. Algorithms, 86 (2021), pp. 1421–1441], on two-dimensional sinc-Gauss sampling formulas to the general multidimensional case. Some numerical experiments are presented to confirm the theoretical analysis.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307010000583ZK.pdf 659KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:1次